Computation of the Wiener index of a new class of carbon nanojunctions

NAFISEH SALEHI ${ }^{\mathrm{a}}$, ASEFEH KARBASIOUN ${ }^{\text {a,b,* }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Najafabad Branch, Islamic Azad University, Isfahan, Iran
${ }^{b}$ Isfahan mathematics house

Abstract

Let G be a molecular graph. The Wiener index of G is defined as the sum of the shortest paths between vertices of G. In this paper exact formulae for the Wiener index of $\left(\operatorname{Le} e_{2,2}\left(\operatorname{Op}\left(Q_{2.0}(T)\right)\right)-T U(6,6)\right.$ is given .

(Received November 12, 2012; accepted September 18, 2013)

Keywords: Molecular graph, Wiener index, Nanojunction

1. Introduction

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Note that hydrogen atoms are often omitted. By IUPAC terminology, a topological index is a numerical value associated with a chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity [13]. This concept was first proposed by Hosoya [4] for characterizing the topological nature of a graph. Such graph invariants are usually related to the distance function $\mathrm{d}(-,-)$. To explain, assume that G is a molecular graph with vertex set $V(G)$ and edge set $\mathrm{E}(\mathrm{G})$. The mapping $\mathrm{d}(-,-)$: $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{V}(\mathrm{G})$ in which $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is the length of a minimum path connecting x and y , will be called "distance function" on G. Recently, this part of Mathematical Chemistry was named "Metric Graph Theory". The first topological index of this type was proposed in 1947 by the chemist Harold Wiener [5]. It is defined as the sum of all distances between vertices of the graph under consideration. Suppose G is a graph with the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance matrix of G is defined as $\mathrm{D}(\mathrm{G})=[\mathrm{dij}]$, where $\mathrm{dij}=\mathrm{d}(\mathrm{vi}, \mathrm{vj})$. It is easy to see that the Wiener index of G is the half sum of entries of this matrix.

Recently many researchers were interested in the problem of computing topological indices of nanostructures. There are more than 200 published papers after 2000, but a few of them devoted to the Wiener index. On the other hand, there are not many methods to compute the Wiener index of molecular graphs and most of them are related to bipartite or planar graphs. Since the molecular graphs of nanostructures are usually nonplanar and most of them are not bipartite, every author applied a method designed for his/her problem.

In some research papers [6-11] one of present authors (MVD) applied some computer programs to compute the Wiener index of nanotubes and nanotori. In this method, we must decompose the problem in some cases and
then prove that the Wiener index in each case is a polynomial of a given order. Finally, we compute the Wiener index in some case and find the coefficients of our polynomials. There is also a numerical method given in [12] for estimating the Wiener index.

In some papers [13-19], the authors presented a matrix method for computing Wiener index of nanotubes and nanotori. This method is appropriate for high symmetry objects and it is not general. The most general methods for computing Wiener index of nanostructures are those given in [20-25]. These methods are useful for graphs constructible by a few numbers of subgraphs. The aim of this paper is to apply the new method on the carbon nanojunction $\left(\mathrm{Le}_{2,2}\left(\mathrm{Op}\left(\mathrm{Q}_{2.0}(\mathrm{~T})\right)\right)-\mathrm{TU}(6,6)\right.$ and to compute its Wiener index.

2. Main results and discussion

Throughout this paper $\mathrm{G}[\mathrm{n}]$ denotes the molecular graph of carbon nano-junction that show by $\left(\mathrm{Le}_{2,2}\left(\mathrm{Op}\left(\mathrm{Q}_{2.0}(\mathrm{~T})\right)\right)-\mathrm{TU}(6,6)\right.$, Fig. 1. At first, we introduce two notions. Suppose G and H are graphs such that $\mathrm{V}(\mathrm{H}) \subseteq \mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{H}) \subseteq \mathrm{E}(\mathrm{G})$. Then we call H to be a subgraph of G. H is called isometric if for each vertex x, y $\in V(H), d_{H}(x, y)=d_{G}(x, y)$. In Figs. 2-5, four isometric subgraphs of $\mathrm{G}[\mathrm{n}]$ are depicted. Define n to be the number of rows in each arm tube (Fig. 1, $\mathrm{n}=3$). Then by a simple calculation, one can show that $|\mathrm{V}(\mathrm{G})|=144 \mathrm{n}+120$.

Fig. 1. The Molecular Graph of $L e_{2,2}\left(O p\left(Q_{2.0}(T)\right)\right)-T U(6,6)$.

To compute the Wiener index of $\left(\mathrm{Le}_{2,2}\left(\mathrm{Op}\left(\mathrm{Q}_{2.0}(\mathrm{~T})\right)\right)\right.$ $\mathrm{TU}(6,6)$, we first calculate the Wiener matrices of these subgraphs. Suppose $\mathrm{S}_{1}, . ., \mathrm{S}_{4}$ are defined as follows:

- S_{1} is the summation of distances between the vertices of core, Fig. 2.
- S_{2} is the summation of distances between vertices of a tube and the vertices of the core, Fig. 3.
- S_{3} is the summation of distances between two vertices of a tube, Fig. 4.
- S_{4} is the summation of distances between vertices of two different tubes, Fig. 5.

We notice that the core has exactly 120 vertices and so its distance matrix is 120×120. By using HyperChem [26] and TopoCluj [27], one can see that $S_{1}=63192$. We consider the isometric subgraphs K, L and M depicted in Figs. 3 to 5 . To compute S_{2}, we consider the Fig. 3. Suppose C denotes the subgraph core and $\mathrm{D}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$, are the set of vertices in the $\mathrm{i}^{\text {th }}$ row of a tube in $\mathrm{G}[\mathrm{n}]$. By TopoCluj, we calculate that the summation of distances between vertices of the core and the set D_{1} is 43776 . In what follows, we obtain a recursive formula for computing S_{2}.

Fig. 2. The Core.

- The summation of distances between vertices of the core and the set D_{1} is 43776 ,
- The summation of distances between
vertices of the core and the set $\mathrm{D}_{1} \mathrm{UD}_{2}$ is $43776+$
54768,
- The summation of distances between vertices of the core and the set $\mathrm{D}_{1} \mathrm{U} \mathrm{D}_{2} \mathrm{U} \mathrm{D}_{3}$ is $43776+54768+67680$,
- The summation of distances between vertices of the core and the set $D_{1} U D_{2} U \quad D_{3} U \quad D_{4}$ is 43776+ $54768+67680+12960$
Therefore,

$$
S_{2}=98544+\sum_{i=0}^{n-3}(67680+i .12960)=-23856+61200 n+6480(n-2)^{2}
$$

Table 1. The Number of $R_{i} R_{j}$ in Computing S_{3}.

Row	The number of $\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}$	Wiener index
1	$\mathrm{R}_{1} \mathrm{R}_{1}$	3936
2	$2 \mathrm{R}_{1} \mathrm{R}_{1}+\mathrm{R}_{1} \mathrm{R}_{2}$	$2.3936+8832$
3	$3 \mathrm{R}_{1} \mathrm{R}_{1}+2 \mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{1} \mathrm{R}_{3}$	$3.3936+2.8832+11712$
\vdots	\vdots	\vdots
n	$\mathrm{n} \mathrm{R}_{1} \mathrm{R}_{1}+(\mathrm{n}-1) \mathrm{R}_{1} \mathrm{R}_{2}+\ldots+\mathrm{R}_{1} \mathrm{R}_{\mathrm{n}}$	$\mathrm{n} .3936+(\mathrm{n}-1) .8832+(\mathrm{n}-2) .11712+\ldots$

Notice that for computing the Wiener index, we should compute $4 S_{2}$.

We now calculate the quantity S_{3}. To do this, we assume that $\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}$ denote the summation of distances between vertices of D_{i} and D_{j} in subgraph L, Fig. 4. For
computing S_{3} it is enough to compute $R_{i} R_{j}$, for $1 \leq i, j \leq n$. In Table 1, the occurrence of $\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}$ in S_{3} is computed.

From Table 1, one can compute S_{3} as follows:
$S_{3}=n .3936+(n-1) .8832+(n-2) .11712+(n-3) .15552+(n-4) 19440$
$+\sum_{i=1}^{n-5}(19440+i .3888)=1944(n-4)^{2}+76968 n-246096$

Fig. 3. The Subgraph K.
Notice that in computing the Wiener index of $\mathrm{G}[\mathrm{n}]$, we should consider $4 S_{3}$, Fig. 1. To compute S4, we assume that Di and $\mathrm{Ei}, 1 \leq \mathrm{i} \leq \mathrm{n}$, denote the set of vertices in the $\mathrm{i}^{\text {th }}$ row of two different arm tubes in $\mathrm{G}[\mathrm{n}]$. Using a similar argument as above, we assume that RiSj denote the summation of distances between vertices of D_{i} and $E_{j}, 1 \leq$ $\mathrm{i}, \mathrm{j} \leq \mathrm{n}$. For computing S_{4} it is enough to compute the wiener matrix for RiRj, for $1 \leq i, j \leq n$ and RiRi, for $i=j$. In Table 2 the occurrence of $\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}$ in S_{4} is computed.

Table 2. The wiener index of $R_{i} R_{j} i=j$ in Computing S_{4}.

\# Rows	The Number of $\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}$
$\mathrm{R}_{1} \mathrm{R}_{1}$	350576
$\mathrm{R}_{2} \mathrm{R}_{2}$	749696
$\mathrm{R}_{3} \mathrm{R}_{3}$	1389872
$\mathrm{R}_{4} \mathrm{R}_{4}$	2333312
$\mathrm{R}_{5} \mathrm{R}_{5}$	3642224
$:$	$:$
$\mathrm{R}_{\mathrm{n}} \mathrm{R}_{\mathrm{n}}$	$749696+(\mathrm{n}-2)(399120+241056)+\sum \sum 241056+\mathrm{i} .(62208)$

Therefore $\sum R_{i} R_{i}$ is equal

$$
\begin{aligned}
& \sum_{i=1}^{n-5} R_{i} R_{j}=749696+(n-2)(399120+241056)+\sum_{j=1}^{n-3} \sum_{i=1}^{j} 241056 \\
& +i .(62208)=10368(n-2)^{3}+120528(n-2)^{2}+509280 n-268864
\end{aligned}
$$

So $S_{4}=\sum R_{i} R_{i}-63192-4 S_{2}-2 S_{3}$. By attention to figure of graph we should compute $6 \mathrm{~S}_{4}$ for wiener index. We are now ready to state our main result.

Fig. 4. The Subgraph M.

Theorem. The Wiener index of the molecular graph of nanojunction $\mathrm{G}[\mathrm{n}]$ is computed as follows:

$$
\begin{aligned}
& \operatorname{Win}(G)=1011144+(n-2) .(657072+526176)+\sum_{j=1}^{n-3} \sum_{i=1}^{j}[526176 \\
& +i .(155520)=67656+152928 n+107568 n^{2}+25920 n
\end{aligned}
$$

Proof. By above calculations
$\mathrm{W}(\mathrm{G}[\mathrm{n}])=\mathrm{S}_{1}+4 \mathrm{~S}_{2}+4 \mathrm{~S}_{3}+6 \mathrm{~S}_{4}=63192+4[-23856+61200 \mathrm{n}+6480$
$\left.(\mathrm{n}-2)^{2}\right]+4\left[1944(\mathrm{n}-4)^{2}+76968 \mathrm{n}-246096\right]+6\left[10368(\mathrm{n}-2)^{3}+120528\right.$

$$
\left.(\mathrm{n}-2)^{2}+509280 \mathrm{n}-268864\right]
$$

Thus, a simple calculation will prove the result.

3. Conclusion

In this paper the Wiener index of a new class of carbon nanojunction is computed. To the best of our knowledge it is the first paper considering the Wiener index of such nanostructures into account. A powerful method for this calculation is presented which is extendable to other nanojunctions.

References

[1] L. B. Kier, L. H. Hall, Academic Press, New York (1976).
[2] I. Gutman, N. Gaurilovic, D. Nankovic, P. V. Khadikar, N. V. Deshpande, P. P. Kale, The Case of Linear Polyacenes, Journal of the Serbian Chemical Society, 59, 519 (1994).
[3] P. V. Khadikar, I. Lukovits, V. K. Agrawal, S. Shrivastava, M. Jaiswal, I. Gutman, S. Karmarkar, A. Shrivastava, Indian Journal of Chemistry- Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 42(6), 1436 (2003).
[4] H. Hosoya, Bulletin of the Chemical Society of Japan, 44, 2332 (1971).
[5] H. Wiener, Journal of the American Chemical Society, 69(1), 17 (1947).
[6] M. V. Diudea, I. Silaghi-Dumitrescu, B. Parv, Match Communications in Mathematical and in Computer Chemistry, 44, 117 (2001).
[7] M. V. Diudea, P. E. John, Match Communications in Mathematical and in Computer Chemistry, 44, 103 (2001).
[8] M. V. Diudea, Bulletin of the Chemical Society of Japan, 75, 487 (2002).
[9] M. V. Diudea, Match Communications in Mathematical and in Computer Chemistry, 45, 109 (2002).
[10] P. E. John, M. V. Diudea, Croatica Chemica Acta, 77, 127 (2004).
[11] M. V. Diudea, M. Stefu, B. Parv, P. E. John, Croatica Chemica Acta, 77, 111 (2004).
[12] M. A. Alipour, A. R Ashrafi, Journal of Computational and Theoretical Nanoscience, 6, 1204 (2009).
[13] S. Yousefi, A. R. Ashrafi, Match Communications in Mathematical and in Computer Chemistry, 56, 169 (2006).
[14] S. Yousefi, A. R. Ashrafi, Current Nanoscience, 4, 161 (2008).
[15] A. R. Ashrafi, S. Yousefi, Match Communications in Mathematical and in Computer Chemistry, 57(2), 403 (2007).
[16] S. Yousefi, A. R. Ashrafi, Journal of Mathematical Chemistry, 42(4), 1031-1039.
[17] A. R. Ashrafi, S. Yousefi, Nanoscale Research Letters, 2, 202 (2007).
[18] S. Yousefi, H. Yousefi - Azari, A. R. Ashrafi M. H. Khalifeh, Journal of Science (University of Tehran), 33(3), 7 (2008).
[19] S. Yousefi, A. R. Ashrafi, Studia Universitatis Babes-Bolyai Chemia, 53, 111 (2008).
[20] A. R. Ashrafi, A. Karbasioun, Digest Journal of anomaterials and Biostructures, 4(4), 663 (2009).
[21] A. Karbasioun, A. R. Ashrafi, Macedonian Journal of Chemistry and Chemical Engineering, 28, 49 (2009).
[22] A. Karbasioun, A. R. Ashrafi, M. V. Diudea, Match Communications in Mathematical and in Computer Chemistry, 63, 239 (2010).
[23] A. R. Ashrafi, A. Karbasioun, M. V. Diudea, Match Communications in Mathematical and in Computer Chemistry, 65, 193 (2010).
[24] A. R. Ashrafi, A. Karbasioun, M. V. Diudea, Studia Universitatis Babes-Bolyai Chemia, 4, 255 (2010).
[25] M. H. Khalifeh, H. Yousefi - Azari, A. R. Ashrafi, Indian Journal of Chemistry, 47A, 1503 (2008).
[26] HyperChem package Release 7.5 for Windows, Hypercube Inc., 1115 NW 4th .
[27] M. V. Diudea, O. Ursu, Cs. L. Nagy, TOPOCLUJ, Babes-Bolyai University, Cluj, (2002).

[^0]
[^0]: "Corresponding author: a.karbasioun@pel. iaun.ac.ir

